Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tópicos
Tipo del documento
Intervalo de año
1.
Viruses ; 14(9)2022 08 25.
Artículo en Inglés | MEDLINE | ID: covidwho-2055384

RESUMEN

Highly pathogenic Arenaviruses, like the Lassa Virus (LASV), pose a serious public health threat in affected countries. Research and development of vaccines and therapeutics are urgently needed but hampered by the necessity to handle these pathogens under biosafety level 4 conditions. These containment restrictions make large-scale screens of antiviral compounds difficult. Therefore, the Mopeia virus (MOPV), closely related to LASV, is often used as an apathogenic surrogate virus. We established for the first time trisegmented MOPVs (r3MOPV) with duplicated S segments, in which one of the viral genes was replaced by the reporter genes ZsGreen (ZsG) or Renilla Luciferase (Rluc), respectively. In vitro characterization of the two trisegmented viruses (r3MOPV ZsG/Rluc and r3MOPV Rluc/ZsG), showed comparable growth behavior to the wild type virus and the expression of the reporter genes correlated well with viral titer. We used the reporter viruses in a proof-of-principle in vitro study to evaluate the antiviral activity of two well characterized drugs. IC50 values obtained by Rluc measurement were similar to those obtained by virus titers. ZsG expression was also suitable to evaluate antiviral effects. The trisegmented MOPVs described here provide a versatile and valuable basis for rapid high throughput screening of broadly reactive antiviral compounds against arenaviruses under BSL-2 conditions.


Asunto(s)
Arenaviridae , Orthopoxvirus , Antivirales/farmacología , Arenaviridae/genética , Genes Reporteros , Virus Lassa , Luciferasas de Renilla/genética , Orthopoxvirus/genética , Investigación
2.
Viruses ; 13(6)2021 05 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1282631

RESUMEN

Several of the human-pathogenic arenaviruses cause hemorrhagic fever and have to be handled under biosafety level 4 conditions, including Lassa virus. Rapid and safe inactivation of specimens containing these viruses is fundamental to enable downstream processing for diagnostics or research under lower biosafety conditions. We established a protocol to test the efficacy of inactivation methods using the low-pathogenic Morogoro arenavirus as surrogate for the related highly pathogenic viruses. As the validation of chemical inactivation methods in cell culture systems is difficult due to cell toxicity of commonly used chemicals, we employed filter devices to remove the chemical and concentrate the virus after inactivation and before inoculation into cell culture. Viral replication in the cells was monitored over 4 weeks by using indirect immunofluorescence and immunofocus assay. The performance of the protocol was verified using published inactivation methods including chemicals and heat. Ten additional methods to inactivate virus in infected cells or cell culture supernatant were validated and shown to reduce virus titers to undetectable levels. In summary, we provide a robust protocol for the validation of chemical and physical inactivation of arenaviruses in cell culture, which can be readily adapted to different inactivation methods and specimen matrices.


Asunto(s)
Arenavirus/fisiología , Desinfección/métodos , Inactivación de Virus , Animales , Técnicas de Cultivo de Célula , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Desinfección/normas , Humanos , Reproducibilidad de los Resultados , Manejo de Especímenes/métodos , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA